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Abstract. We discuss some examples of measures on lattice systems, which lack the property
of being a Gibbs measure in a rather strong sense.

1. Introduction

In recent years extensive research has been done on the occurrence of states (probability
measures) on lattice systems which are not of Gibbsian type. Such measures occur for
example in renormalization-group studies [8-13,17,18, 21, 40], non-equilibrium statistical
mechanical models [26, 33, 38, 42], image analysis [5, 15, 34], probabilistic cellular automata
[19, 39] and random cluster models [19, 39]. The possibility of their occurrence and their
properties have been considered by various authors [1, 7, 14, 20, 22, 24,28-32, 36, 37,41, 44].
This non-Gibbsian behaviour has often been considered ‘pathological'—undesirable—, and
there have been various attempts to control the non-Gibbsianness.

One approach, advocated by Martinelli and Olivieri [36,37], is to study how the
non-Gibbsian measures behave under decimation transformations, that is, to consider the
restriction of the measure to some sufficiently sparse periodic sublattice. Various examples
where a once renormalized measure is non-Gibbsian have been shown to result in Gibbs
measures again after such mappings, mostly, but not exclusively, in the regime where the
original model has no phase transition [31, 36, 37].

In another approach, developed by Ferdez and Pfister [14], one studies the size of
the set of ‘pathological’ configurations and tries to show that it is small, i.e. of measure
zero. In this case one says that the non-Gibbsianness is ‘weak’ [14, 19, 28, 34].

An even stronger control was recently obtained by Dobrushin in an example first
studied in [41]. In this example one considers the restriction of the plus-phase of the two-
dimensional Ising model to a one-dimensional sublattice. Here the non-Gibbsian measure
can be described as the Gibbs measure for an almost everywhere defined potential [7].

In this paper we present some examples in which the non-Gibbsianness is ‘robust’, either
in the sense of stable under decimations, or in the sense of being due to a large-measure
set. It is known [35] that the two notions are not equivalent; indeed, there are examples of
measures which have a large set of pathological configurations but which become Gibbsian
after decimation.

2. Notation and some standard results

First we will introduce some notation and recall some known facts. For details we refer
to [12,16]. We consider spins placed at the vertices ofldtiice Z¢. The configuration
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spaceis Q = SZ' wheres is thesingle spin spaceThe notationw, for the finite volume
projection ofw € © to S4 will be used. The configuration space will be endowed with its
product Borelo-field F. A product measurg will be chosen on(2, ) as areference
measure An interactionis a family of real valued function®, on S, indexed byP(Z¢),

the set of finite subsets &t¢, and with the propertyp; = 0. We considettranslation
invariant interactions, i.e® i (wask) = Pa(wa), for all k € Z¢. The interactiond is
calledabsolutely summableshenever

D 1 ®allee < 00 (2.1)

A>0
AEPH(ZY)
where|| - || denotes the sup-norm. The energy content of a volumis given by the
Hamiltonian

HE(alen) = Y Px((@ x £)x) (2.2)
XNAAD

where (w x &)y, = o, if x € A, and (v x &), = & if x ¢ A, while A¢ = Z¢ < A.
Hereé&,. is a particular configuration fixed outside the volumeand plays the role of the
boundary condition Whenever the configuration space is compact, absolute summability
of the interaction is a natural condition since it guarantees the existence of finite volume
Hamiltonians. A probability measure @£, F) is called aGibbs measuréor the interaction
@ at inverse temperatur if a version of its conditional probabilities, (w,, £5c) satisfies
the DLR-equation

TADA: EA) _ p2 rlre)—HE (aro)) (2.3)
TA(TAs Enc)
for every finite A. We denote the collection of these conditional probabilitiesTby—=

{mataer, @)
We will use the following notion of ‘locality’ for conditional probabilitied] is called
quasilocal if

lim sup |7A(,Exc) — A, Nac)] =0 (2.4)
N —74 ;'WEQ
A=

for all A C A’ € Pr(Z%). 11 is calledquasilocal at the pointy if

lim sup |wA(:, énc) — A, nac) =0 (2.5)
N—=Z! geQ
Exr=nyp

for all A ¢ A’ € P;(Z9). For the models we will consider in the following, quasilocality
coincides with the continuity of conditional probabilities with respect to the boundary
conditions (in the product topology).

IT is said to beuniformly non-nullwith respect to the reference measyré, for every
Erc € S2 andw € Q, there is are > 0 such thaty, (wa) > 0 impliesmy (wa, £ac) = &,
for all A € P¢(Z%). (In percolation theory uniform non-nullness is called ‘finite energy
condition’, a terminology which is quite suggestive of a Gibbsian description of the
probabilities involved.)

For Gibbs measures the following characterization theorem is known [12, 23, 43].

Theorem 2.1 LetIT be a consistent family of everywhere defined conditional probabilities
(a ‘specification’), and suppose a reference measures given. The following two
statements imply each other.



Robustness of the non-Gibbsian property: some examples 2467

(1) There exists an absolutely summable interactiorsuch thatIl is a family of
conditional probabilities corresponding to a Gibbs measurebfor
(2) 1T is quasilocal, and uniformly non-null with respect to the reference meggure

Another useful notion, relating different Gibbs measures, is the relative entropy density.
This is defined as follows. Suppose two different probability measeires, are given on
(2, F). Denote byh,,.,, the Radon-Nikodym derivative @f with respect tq,, whenever
it exists. Suppose, moreover, that lag,,, € L(01). The quantity

h’ 15 2((1)) |Ogh 15 z(w)Qz(dw) If Ql << 02
I(01l02) = /sz e e (2.6)

00 otherwise

is called therelative entropy ob; with respect ta,. Denote byo”* the restriction ofp to
Fa, the product Boreb-field for SA. The limit
Fan | o Fhn

1
lim 1 2.7
AnePrz) [ An] (Ql |Qz ) ( )

i(o1l02) =

defined in van Hove sense, is called tietative entropy densityfor o1 with respect to

02 The relative entropy density is actually the rate function describing the (level-3) large
deviation behaviour op; with respect tap,. However, the limit above need not exist. It

is known to exist wherp, is chosen to be a Gibbs measure, and hence in particular when
it is a product measure.

Theorem 2.2 The relative entropy density has the following properties.

(1) io1le2) = 0.

(2) Supposep; and g, are two Gibbs measures for translation invariant interactions.
Then:

() i(o1]o2) > 0 iff p; andp, are Gibbs measures for different interactions

(b) i(01]02) = 0 iff p; and g, are Gibbs measures for the same interaction.

For a proof, see for example [16, section 15.3], or [12, section 2.6.6].

Now we turn to considering transformations of Gibbs states. Take a positive irtteger
and consider the sublattidgeZ having spacing. This will be the renormalized lattice. In
our notation we will not use rescaled distances.

A renormalization transformatioris a probability kernell” defined by

o) = [ Tw.dro() 2.8)
sz4

satisfying the following properties.

(1) The image measure is invariant under a subgroup of the translation group leaving
bZ4 invariant.

(2) It is strictly local in the sense that:

(a) there exist two van Hove sequendes,} C P (Z9) and{A} C P;(bZ?) such that
for eachE € F,, the functionT (-, E) is F,, -measurable.

(b) there exists a finit& > 0, calledcompression factorsuch that

A,
| "gl{:bd.

limsup— |

n—soo |},
In the most studied cases the renormalization transformation is a product of kernels
defined on blocks of internal spins:

T(w.dv) = [] T(sw, dr,) (2.9)

xebZA4
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where B(x) is a block attached to the site and7 is blockwise defined. We will use Ising
spin variablesS = {—1, 41}, and take a boxB(x) C Z¢, a translate of @-cube such that
its first vertex isx. The particular examples of renormalization transformations in which
we will be interested in the following are:

e Decimation transformation

T (e, dty) = 8(wy — T,) dr, (2.10)
o Kadanoff transformation with parametgr> 0
eXP(PTe D yepiy @) 8(te — 1) +8(t, + 1) e
2¢oship Y, cp) @y) 2 .

The decimation transformation is an example of deterministic renormalization
transformation while the Kadanoff transformation is an example ofstachastic
renormalization transformation.  Kadanoff transformations with trivial scaling have
important applications in image reconstruction problems [5, 15,17]. For further discussion
on renormalization transformations we refer to [12] and references quoted therein.

T (wpe), dr,) = (2.11)

3. Examples of non-Gibbsianness which are stable under decimation

Consider a massless Gaussian modelZdn The configuration space BZ and the
interaction is defined by

TVik(w; — wy) if A={j,k}

P, = .
0 otherwise

(3.1)
wherew;, w; € R. The functionsV;, are even functions of the differences — w;, and we

assume them to be translation invariant, Vg.; x4, = Vi, forall j, k, 1 € Z4. By particular

choices of the potential one can describe in generardrarmonic crystal When all the
functions Vj;, are quadratic, the corresponding system is callduhianonic crystal For
harmonic or anharmonic crystals one can ask the question of whether Gibbs measures can
be constructed for the given potential (where as reference measure the Lebesgue measure is
chosen). It can easily be seen that such a Gibbs measure for a harmonic crystal is actually
an example of anassless Gaussiame. a probability measure defined by the covariance
matrix

Cu=oowwy o0 = oo [ [ ey (32)

with ¢ € LY([-=m, ]?), positive and even, and the inverse of the covariance matrix
Bji = Cj;cl satisfying the massless condition

> By=0. (3.3)

kezd
The mean of this Gaussian measure we will take to be zero. The link between the harmonic
crystal interactionV and the massless Gaussian covariance is given by the relation

Vik(w) = %Bjk(wj — wp)?. (3.4)
Ford < 3, suchBj, define a long-range interaction, far > 3 also nearest-neighbour
interactions can be obtained. For further details and properties of massless Gaussians we
refer to [2—4, 6, 8,12, 24].
Now we consider theprojected massless Gaussian modsitained under the map
w; — sign w;, Vj. (Since the set of those configurations for which the sign is zero is
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negligible, one can choose for this case any value of the projected Gaussian spin variable.)
The projected system is thus a system of Ising spins with a probability measure induced by
the sign map.

Let us fix a particular Gaussian model which is defined by its covariance matrix. We
denote byu the translation invariant (Gaussian) Gibbs measure with mean zero, and denote
the induced measure by. This measure is known to be a non-Gibbsian measure in
any dimension [8,12,24]. It is known to remain non-Gibbsian under a general class of
deterministic transformations [37]. Our new result is that this remains true for stochastic
maps like the Kadanoff transformations. Moreover, we can show that the quasilocality
property breaks down for stochastically transformed measures, something which is as yet
unknown in the deterministic case.

Theorem 3.1 Consider the Kadanoff transformatidf, with parametep, and a measure
as defined above. For evepy> 0, K0 is non-Gibbsian. In factkK,o is not quasilocal.

First we need a lemma [12, 45]:

Lemma 3.2 Suppose; andp, are two probability measures on a measurable spacg’),
such that (01]02) exists. Consider a renormalization transformafibgiven on this measure
space. Then the relative entropy density o1|7T 02) exists and

i(T01|T 02) < constantx i(01]02)- (3.5)

Proof of the theorem It is known that [3, 8,12, 24]

i(6710) =0=1i(5"lo) (3.6)
therefore by the lemma above we have

i(Ky8"|Kp0) =0 (3.7)

i(Kp8~1Kp0) =0 (3.8)

wheres™ ands~ are the Dirac measures on the all-plus and all-minus configurations.
It can be seen by the definition of the Kadanoff transformation that it transforms

§-measures into product measures, thus there exist product meagu;ees; such that

K87 =1 Vp (3.9)

K8~ =14, Vp. (3.10)
Since k; and 1, are trivially two Gibbs measures for two non-equivalent one-site
interactions, andk,o cannot be a Gibbs measure simultaneously for both of these one-
site interactions, by theorem 2.2 we infer that there is no absolutely summable interaction
such thatk ¢ would be a Gibbs measure for it. Furthermore, it is known that the family of
conditional probabilities corresponding to the measuig not uniformly non-null [12, 24],
although the measure is strictly positive, that is, every cylinder set has positive measure.
Strict positivity is a weaker property than uniform non-nullness, because for uniform non-
nullness to hold one needs that each cylinder set has positive measure which remains
strictly bounded away from zero undarbitrary conditioning. However, it is easy to see
that under the Kadanoff map the family of conditional probabilities becomes uniformly
non-null, therefore by theorem 2.1 we can conclude fas is not quasilocal. O

Corollary 3.3 Consider an arbitrary decimation transformatidn Then neither the
measure(T o K)o, nor the measur€k, o T)o is Gibbsian. This also holds whefi
is replaced by any finite iterate df.
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Proof. This follows by a similar argument applied to either of the measures by taking note
of the fact that a decimation transformation maps a product measure into another product
measure, and it maps a Dirac measure into another Dirac measure. (Actually, this applies
to a wider class of deterministic transformations.) d

As was shown in [8,12], some of these projected Gaussians are scaling limits for
majority rule transformations, in particular of relevance in high dimensions. Applying a
different renormalization-group map to it corresponds in renormalization-group language to
making a move in a ‘redundant’ direction [46]. Such a ‘redundant’ direction corresponds
to taking a coordinate transformation in the (here not existing) space of Hamiltonians.

Remark 3.4 A version of theorem 3.1 remains true for other examples of measures which
are strictly positive but not uniformly non-null, in particular for the invariant measures of
both the voter model and the Martinelli-Scoppola model.

The voter modelis an interacting particle system defined by the flip rates

1
o, x) = o D (3.11)

yilx—yl=1

and the variables (the ‘votersd), placed onZ? can take the values zero and one. It is
well known [27] that ford = 1 andd = 2 the only extremal stationary measures &ye
and$;, where the notation® and 1 correspond to the configurations = 0 andw, = 1,
respectively, for allx € Z¢. Ford > 3, however, there is a one-parameter family of
extremal stationary translation invariant measyneo<.<1, parametrized by the density of

o, = 1 with respect tov,. For the voter model, the fact that the relation (3.6) holds for
the extremal translation invariant stationary measutedas been proven for ail > 3 in

[26]. It is not known in this case, nonetheless it is believed, that the invariant measures
are strictly positive, but the family of conditional probabilities corresponding to them is not
uniformly non-null.

The Martinelli-Scoppola mode([38] is a model with stochastic cluster dynamics on
the latticeZ?. The single spin space i§ = {0, 1}, wherew, = 0 corresponds to an
empty site, andv, = 1 corresponds to an occupied site. A maximal connected set of
occupied sites is called a cluster. A sétc Z? is called connected if for any two sites
x,y € X there exists a sequende;},—1.. ., C X of sites (a path) such that; = x,

x, =y and|xy — x01l = L,Vk = 1,...,n — 1. The dynamics is defined as follows.

At each timer a configurationo’ € {0, 1% is given. The configuratiom'*! is defined

by a process consisting of a simultaneous creation and annihilation operation. The creation
operation consists of changing the empty sites at tifméo occupied sites at time+ 1 with
probability p at each site independently of other sites. The annihilation operation consists
of removing the clusters belonging to the configuratioh independently of each other
and with probability 1/2. For sufficiently small probabilitigsthere is but one invariant
measure for this process. For the Martinelli-Scoppola model the relation (3.6) was proved
in [38]. It is not known, but it is suspected, that the family of conditional probabilities of
the stationary measure for this model also fails to be uniformly non-null [37]. Since in this
model there is no+/— symmetry,K,o has to be distinguished from a product measure
by means of, for example, some correlation functions. Indeed, it is known that there exist
some fast decaying non-trivial correlation functions [38].
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4. An example of non-quasilocal behaviour on large sets

In this section we show that mixtures of Gibbs measures for different interactions are non-
Gibbsian in a rather strong sense. These measures can simply be shown to be non-Gibbsian
[12]; here we show that the situation is worse in the sense that every configuration is a
point at which quasilocality does not hold.

Let (2, F, x) be a measure space, with= SZ for somes. Suppose on this measure
spacep; and, are two Gibbs measures for the same interaction at different temperatures
B1 andB,. Itis well known that these two Gibbs measures are singular with respect to each
other, or equivalentlyf|o; — 02|\ = 2. For notational simplicity we will assume that the
interaction is of finite range.

Consider the convex combinatian = %(gl + 02). Denote byn,, nf\l) and nf) the
conditional probabilities fop, o1 andg,, respectively. Then

A 0) =10, w) for op;—almost allw € Q (4.1)
Al w) = nf\z)(~, ) for po—almost allw € @ (4.2)

holds for all finite subset&\ ¢ Z¢. We denote byC; the set of configurations for which
(4.1) holds, and by, the set of configurations for which (4.2) holds. Also, we take the
neighbourhood basis

Upp = {0 T 'y = wa}.

Since the two measures are singular with respect to each other, the above considerations
lead to the following conclusion.

Theorem 4.1 Consider the sets
VP = CLN U
VP = CaNUya.

w

For everyw € Q there exists a volum&’ C A such that for each two configurations
S V,f)l)A andn € Vf)A whenever digbA, 9A’) is larger than the range of the interaction,
there is a constant > 0, independent of\, such that

im [7a (-, Enc) — A, mac)| > €.
A—74

The point here is that the conditional probabilities A are computed at an inverse
temperatures; or B,, according to what happens outside the larger volumebut not
depending on the configuration restricted to the annulus between the boundariasdf’.
Theorem 4.1 above says that the mixture of two Gibbs measures at different temperatures
is non-quasilocalt every configuration. This is an example of a measure which fails
everywhere to be Gibbsian, thus a case where the ‘pathology’ is extremely severe. Note that
theorem 4.1 can actually be generalized in a straightforward way to any convex combination
of two Gibbs states for two non-equivalent interactions. As a side remark, we observe that
if the two Gibbs measures both remain Gibbsian under decimation, then the strong non-
Gibbsianness of their convex combination is preserved under this decimation.

A particular example of a non-Gibbsian measure for which every configuration is a point
of non-quasilocality is provided by the following example. Consider the nearest-neighbour
ferromagnetic Ising interaction on the two-dimensional square lattice in the subcritical
regime. Denote by.™ and = the + phase and the- phase, respectively. In [31] it
has been shown that at sufficiently low temperatures the projection to the one-dimensional
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sublatticebZ with b > 3 of u™ and = are Gibbs measures for two different absolutely
summable interactions. Hence we have by theorem 4.1:

Corollary 4.2 The conditional probabilities for a projection of any mixtyre= Au™ +
Q1-—Mp~,0< i <1, ontobZ, with b > 3, are non-quasilocal at every configuration.
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